Search Results/Filters    

Filters

Year

Banks



Expert Group











Full-Text


Issue Info: 
  • Year: 

    0
  • Volume: 

    3
  • Issue: 

    (ویژه نامه 10)
  • Pages: 

    57-58
Measures: 
  • Citations: 

    0
  • Views: 

    694
  • Downloads: 

    0
Abstract: 

مقدمه: نظر به اینکه سیستم آموزشی فعلی جهت دانشجویان گروه پزشکی به نحوی است که دانشجویان بیشتر زمان آموزش خود را در چارچوب برنامه های رسمی محدود به شرایط تصنعی و کلاسیک طی می کنند، در نتیجه میزان رضایت از کیفیت آموزش به روش موجود و کاربرد آموخته ها در شرایط واقعی نیاز به بررسی و حتی تغییر در رویکرد حاضر دارد.مرور مطالعات: با مطالعه تاریخچه خدمات و آموزش جامعه نگر و جامعه محور در می یابیم که حدود یک قرن پیش به صورت Service Learning ارایه خدمات و آموزش به فراگیران همزمان در بستر جامعه انجام می پذیرفت. از اوایل 1900 تاکنون، آموزش دهندگان متوجه اهمیت ارتباط خدمات با اهداف آموزش شده اند و درطی قرن از 1960 تا 1970 در نتیجه S.L گذشته این مفهوم در آموزش جایگاه خود را حفظ کرده است. اغلب برنامه های فعالیت دانشجویان در جامعه در راستای اهداف آموزش توسعه یافت. این S.L اساس اعتقاد و مشابه نگرش ساختار گراهاست که معتقدند تولید و ساخت دانش در افراد از دانش و تجربیات پایه و مقدماتی شروع می شود بطرف فرایند یادگیری، تفسیر و بحث پیرامون اطلاعات جدید در زمینه اجتماع و محیط فردی پیش می رود. در حقیقت مفهوم یادگیری دو طرفه اساس و وجه تمایز تجربه ناشی از آموزش به روش دانشجویان به اهداف آموزشی دروس خود با مشارکت در برنامه های ارایه خدمت در شرایط واقعی دست می یابند و جامعه نیز مستقیما از آن بهره مند می شود. در این روش هم فراگیر و هم جامعه بهره مند می شوند. و فراگیران فعالانه به تولید محصول و خدمت مرتبط با اهداف آموزش می پردازند. با توسعه نگرشها، باورها و رفتارها در ارتباط با جامعه، شهروندانی مطلع و نیروی کار تولیدی تربیت می کنند. در این روش اساس کار دریافت باز خورد از جامعه و مدرسان است که به فراگیران فرصت می دهد دانش جدید خود را با دیگران مطرح کند و آموخته های خود را برای دیگران معنی دار کنند.بحث: در آموزش سنتی مردم بر خدماتی که دریافت میکنند، هیچ گونه کنترلی ندارند، فراگیران نیز قدرت مداخله و کاربرد آموخته های خود را ندارند ولی در این آموزش، تمام ابعاد نیازهای مردم دیده می شود و فراگیران با مشارکت مردم روی نیازها کار می کنند، مردم بر ارایه خدمات نظارت دراند. انریش می گوید: یادگیری فراگیران از طریق خواندن کتابهای قطور در اطاقهای در بسته ایجاد نمی شود، بلکه باید درهای پنجره ها را باز کرد و به دنبال تجربه بود. در نهایت به کمک SL فرصتی برای آزمون مسوولیت پذیری، تبدیل شدن به یک شهروند خوب را برای فراگیران در حین دستیابی به اهداف آموزش و ارایه خدمت به مردم ایجاد نماییم.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 694

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    1397
  • Volume: 

    1
Measures: 
  • Views: 

    813
  • Downloads: 

    0
Abstract: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 813

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0
Author(s): 

Issue Info: 
  • Year: 

    2019
  • Volume: 

    1192
  • Issue: 

    -
  • Pages: 

    127-137
Measures: 
  • Citations: 

    1
  • Views: 

    136
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 136

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    0
  • Volume: 

    8
  • Issue: 

    3
  • Pages: 

    70-72
Measures: 
  • Citations: 

    0
  • Views: 

    2615
  • Downloads: 

    0
Abstract: 

سال هاست که توجه محققین به مساله تغییر رفتار پس از ارائه آموزش جلب شده است. وجود فاصله بین آموزش دانشگاهی و اعمال اجرایی روزانه در محل های کاری و نیز برآورده نشدن همه نیازهای محیط کار توسط دانش آموختگان محیط آموزشی که اصطلاحا تفاوت بین تئوری و عمل نام دارد، سبب شکل گرفتن نوعی روش یادگیری به نام یادگیری مبتنی بر عملکرد (Practice-based Learning) گردید. مفهوم یادگیری مبتنی بر عملکرد، مفهومی گسترده است که به عنوان یک استراتژی کلیدی جهت پیشرفت دادن یادگیری فراگیران و دخیل کردن آنان در فرآیند یادگیری خود، که منجر به کسب درک بهتر و عمیق تر از موقعیت می شود بکار می رود. این مطالعه سعی دارد تا ضمن ارائه تعریفی جامع از Practice-based Learning، به نحوه و مراحل اجرا، ارزشیابی و چالش های پیش روی این روش آموزش بپردازد.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 2615

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

GHANBARI AHMAD | VAGHEI YASAMAN | SAYYED NOORANI SAYYED MOHAMMAD REZA

Issue Info: 
  • Year: 

    2014
  • Volume: 

    2
  • Issue: 

    5
  • Pages: 

    1398-1415
Measures: 
  • Citations: 

    0
  • Views: 

    447
  • Downloads: 

    394
Abstract: 

In recent years, researches on reinforcement Learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired Learning techniques. Neural network reinforcement Learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applications. Although many surveys investigated general RL, no survey is specifically dedicated to the combination of artificial neural networks and RL. This paper therefore describes the state of the art of NNRL algorithms, with a focus on robotics applications. In this paper, a comprehensive survey is started with a discussion on the concepts of RL. Then, a review of several different NNRL algorithms is presented. Afterwards, the performances of different NNRL algorithms are evaluated and compared in Learning prediction and Learning control tasks from an empirical aspect and the paper concludes with a discussion on open issues.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 447

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 394 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Mohammadi Mahla | Hosseini Andargoli Seyed Mehdi

Issue Info: 
  • Year: 

    2024
  • Volume: 

    54
  • Issue: 

    1
  • Pages: 

    121-131
Measures: 
  • Citations: 

    0
  • Views: 

    42
  • Downloads: 

    11
Abstract: 

We address the throughput maximization problem for downlink transmission in DF-relay-assisted cognitive radio networks (CRNs) based on simultaneous wireless information and power transfer (SWIPT) capability. In this envisioned network, multiple-input multiple-output (MIMO) relay and secondary user (SU) equipment are designed to handle both radio frequency (RF) signal energy harvesting and SWIPT functional tasks. Additionally, the cognitive base station (CBS) communicates with the SU only via the MIMO relay. Based on the considered network model, several combined constraints of the main problem complicate the solution. Therefore, in this paper, we apply heuristic guidelines within the convex optimization framework to handle this complexity. First, consider the problem of maximizing throughput on both sides of the relay separately. Second, each side progresses to solve the complex problem optimally by adopting strategies for solving sub-problems. Finally, these optimal solutions are synthesized by proposing a heuristic iterative power allocation algorithm that satisfies the combinatorial constraints with short convergence times. The performance of the optimal proposed algorithm (OPA) is evaluated against benchmark algorithms via numerical results on optimality, convergence time, constraints’ compliance, and imperfect channel state information (CSI) on the CBS-PU link.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 42

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 11 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2023
  • Volume: 

    53
  • Issue: 

    1
  • Pages: 

    61-67
Measures: 
  • Citations: 

    0
  • Views: 

    168
  • Downloads: 

    31
Abstract: 

Face recognition from digital images is used for surveillance and authentication in cities, organizations, and personal devices. Internet of Things (IoT)-powered face recognition systems use multiple sensors and one or more servers to process data. All sensor data from initial methods was sent to the central server for processing, raising concerns about sensitive data disclosure. The main concern was that all data from all sectors that could contain confidential information was placed in a central server. Federated Learning can solve this problem by using several local model training servers for each region and a central aggregation server to form a global model in IoT networks. This article presents a novel approach to optimize data transfer and convergence time in federated Learning for a face recognition task using Non-dominated Sorting Genetic Algorithm II (NSGA II). The aim of the study is to balance the trade-off between training time and model accuracy in a federated Learning environment. The results demonstrate the effectiveness of the proposed approach in reducing data transfer and convergence time, leading to improved performance in face recognition accuracy. This research provides insights for researchers and practitioners to enhance the efficiency of federated Learning in real-world applications.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 168

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 31 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2019
  • Volume: 

    5
Measures: 
  • Views: 

    179
  • Downloads: 

    0
Abstract: 

TODAY, SOCIAL networks HAVE PROVIDED A SUITABLE PLATFORM FOR SOCIAL RELATIONSHIP. AMONG ONLINE SOCIAL networks, TWITTER HAS BECOME A POPULAR PLATFORM FOR INFORMATION DIFFUSION AROUND THE WORLD. DUE TO POPULARITY OF TWITTER, IT HAS BEEN TARGETED BY SPAMMERS AND MALICIOUS ACTIVITIES. IN THIS REGARD, SEVERAL STUDIES HAVE BEEN CONDUCTED USING MACHINE Learning TECHNIQUES BY RESEARCHERS TO REACH PROMISING RESULTS. IN RECENT YEARS, ENSEMBLE Learning ALGORITHMS HAVE BEEN PRESENTED AS ONE OF THE MODERN MACHINE Learning TECHNIQUES, DUE TO ITS HIGH ACCURACY, FOR DATA MINING. IN THIS PAPER, WE PROPOSE A DATA MINING FRAMEWORK USING ENSEMBLE Learning FOR SPAM DETECTION IN TWITTER. IN THE PROPOSED METHOD, AFTER DATA COLLECTION, PREPROCESSING, FEATURE EXTRACTION AND FEATURE SELECTION, THE CLASSIFICATION IS CONDUCTED BY ENSEMBLE Learning USING THE DECISION TREE, K-NEAREST NEIGHBOR AND NAï VE BAYES. THE SIMULATION RESULTS ARE COMPARED WITH OTHER CLASSIFICATION ALGORITHMS.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 179

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0
Author(s): 

JAFARI SAEED MOHAMMAD

Journal: 

ELECTRONIC INDUSTRIES

Issue Info: 
  • Year: 

    2011
  • Volume: 

    2
  • Issue: 

    1
  • Pages: 

    37-52
Measures: 
  • Citations: 

    0
  • Views: 

    1044
  • Downloads: 

    0
Abstract: 

An important problem for the WiMAX networks is how to provide a guaranteed quality of service for applications. A key aspect of this problem is how BSs should share bandwidth capacity between different classes of traffic. This decision needs to be made for each incoming packet, and is known as the packet scheduling problem.A major challenge in packet scheduling is that the behavior of each traffic class may not be known in advance, and can vary dynamically.In this paper, we describe how we have modeled the packet scheduling problem as an application for reinforcement Learning (RL). We demonstrate how our RL approach can learn scheduling policies that satisfy the quality of service requirements of multiple traffic classes under a variety of conditions. The proposed solution has been designed to have an ability to accommodate integrated traffic in the networks with effective scheduling schemes. A series of simulation experiments have been carried out to evaluate the performance of the proposed scheduling algorithm. The results reveal that the proposed solution performs effectively to the integrated traffic composed of messages with or without time constraints and achieves proportional fairness among different types of traffic.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1044

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2023
  • Volume: 

    12
  • Issue: 

    3
  • Pages: 

    1-16
Measures: 
  • Citations: 

    0
  • Views: 

    38
  • Downloads: 

    0
Abstract: 

Social networks are one of the types of complex networks. Identifying communities in social networks is an effective way to use their information, for which several algorithms have been presented so far. In this paper, novel algorithms are designed, in which a Learning automaton is attached to each node; The number of actions of Learning automata is fixed and equal to the estimate of the number of network communities. At each step, each of the Learning automata chooses an action from its set of actions. Choosing any of these actions means assigning the label of that community to the node. The action chosen by each automaton is evaluated based on the chosen actions of its neighbors ((local attention) and/or communities detected by the entire method (global screening). The result of the evaluation leads to generate rewards or punish signal for the automata. By receiving a reward, the probability of re-choosing the chosen action by the automaton, or the community label, increases, and otherwise, by receiving a fine, the probability of this action decreases. By repeating the algorithm, the optimal action is determined as long as no change occurs in the selected label of the corresponding automata of each node with more iterations, and as a result, the optimal communities are determined as the output of the algorithm. The comparison of the results of the experiments shows the effectiveness of the proposed methods in comparison with the previous methods.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 38

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button